
 Assembly for Beginners

 Have you ever had a look at C, C++, or Pascal? Did you feel
dizzy after reading the first 10 comands? Well “You ain’t seen
nothing yet”! Assembly, being only one level away from the user
friendliness of programing in binary, is in some respect the most
difficult way of programing your Mac. But it is also the most
efficient way of doing it as well. Whatever is written in
assembly is
for sure faster than something written in C, or Pascal or, God
forbid, Applescript! Another benefit of assembly, in my point of
view, is that you only need to learn a set of about 60 (if you’re
using a 68k processor you need to know 56 basic instructions)
commands (out of which you use maybe 30) instead of the bunch of
commands used in C.

 Since anything you write in assembly language is direcly
involved with the RAM, Bus, and other hardware components of your
Mac, you will first need to have an understanding of the
different components of your computer. This file will deal ONLY
with the 68000 chip, and how to program a computer using that
chip. However, since the PPCs can simulate a 68k chip there
should be no problem with writing programs for a 68k Mac and
using it on a PPC. Also programing a PPC chip is a bit more
involved, if you are a beginner then it’s a good idea to
understand the basics of programing a 68k Mac before attacking a
PPC platform. (Notice how I used the word “Mac” to refer to a
computer... I just realized that in a world of clones that does
not politically corect, so please excuse my ignorance!)

--==< Basic Terminology >==--

- The Processor - This is where all the commands you create are
sent and processed.

- The Bus - Where the information travels between the processor
and the memory.

- The Memory - A place where data is stored. Think of it like a
bunch of boxes with their own
addresses where the procesor can store data, or retrieve data
from.

- Registers - Places within the processor where the information
is stored. There are two types of registers: Data registers and
Address registers. Data registers are used to hold information,
such as numbers. Address registers are used to point to an area
in the memory where a piece of data can be found. In my simple
head (a professional progamer would probably skin me alive for
saying this) data registers are used to hold data that will be
processed right now, while the address registers point to places
in the memory where data is stored for future use. For example,
if I do a simple mathematical calculation, I would do it in the
data register and then store the answer in the memory using the
address registers. There are 8 data registers and 8 address
registers, numbered d0-d7 and a0-a7 (a7 is reserved as the stack
pointer). So whenever I would want to put a number to a data
register I would choose between d0-d7. The purpose of registers
and their uses will become a lot clearer when we actually start
programing!

- Stack Pointer - A part in the memory where data can be stored
temporarily. As a matter of fact this is address register 7 (more
about this later). The way it works is that you you take data and
push it on the stack. Then you take another piece of data and
push it on top of the other one. Then at any time you can remove
these pieces of data. Think about it as stacking paper sheets on
top of each other. If you put three sheets of paper on top of
eachother in order to see what’s on the sheet you put down first
you have to remove the first two.

- Addressing - Getting information from the registers.

- Program Counter - A special address register that keeps track
of where in the program the processor is.

- Number Systems - If you don’t know what this is, you should
think twice about reading on! I’m sorry but I won’t go into what
the different number systems are. Ask your math teacher! I’ll
just let you know that in assembly language it’s an extreme need
that you have a way of converting between decimal and hexadecimal
numbers!

- Bytes, Words, and Longs - Refer to the length of a number. In
assembly, a byte refers to a number the length of two hex digits,
a word refers to a number the length of 4 hex digits and a long
is the
length of 8 hex digits. For example, a byte may be AF, a word
ABCD, and a long would be 12345678. In practical terms except for

a few exceptions the only two uses for bytes words and longs is
speed and
number manipulation. For what is the use of moving 00000001
around when you can just move 01 around? And if you have 12345678
in a data register, you can move the last two digits around by
just moving the byte.

--==<Programing>==--

Ok here we go...A smart thing now would be to give you a list of
commands that the 68k processor uses. However, since that was
already published in the last issue of HackAddict, I’m gonna be a
lamer and not give you that! (I guess you’ll just have to
download it) But I will explain the use of some of the main
commands.

Well let’s start with maybe the most simple example, adding two
numbers together. The way you would do it is by pushing the first
number into one of the data registers, push the second number
into a different data register and add the two data registers
together. Let’s say we were adding 1FE and 2C together, in
assembly you would do it like this:
move.l 1FE,d0 *moves number 1FE into data register 0
move.l 2C,d1 *moves number 2C into data register 1
add.l d1,d0 *adds the number in data register 1 to that in
 *data register 0

This is an easy example and I don’t think there should be any
problem following it. Notice how I used longs. In reality when
you would put the long 1FE onto d0, you actually push the number
000001FE, onto d0. You could do the above procedure like this as
well:
move.w 1FE,d0
move.b 2C,d1
add.w d1,d0

The result would be exactly the same however, there are a few
things to point out here. Notice how in the first line I’m moving
a word and how in the second line I’m moving a byte. Remembering
that a word can hold up to 4 digits and a byte can hold only two
this should be quite understandable. Now the last line takes the
word in d1 and adds it to the word in d0. After it stores the new
value in d0. Now try to figure out what this does:
move.w 1FE,d0
move.b 2C,d1
add.b d0,d1

Here we changed only the last line. Notice how now only the byte
stored in d0, will be added to d1. This means that only FE will
be added to 2C, because a byte can only hold two digits and
therefore
only the last two digits were added. Can you spot the potentials
for number manipulation? This is why it is important to keep
track of which register holds what size of a number! And now for
a bit more
complicated one:
move.l 12345678,d0 *line 1
move.l 10,d1 *line 2
loop: *line 3
move.l d0,d2 *line 4
mulu.l 10000000,d2 *line 5
divu.l 10000000,d2 *line 6
add.b d2,d3 *line 7
mulu.l 10,d3 *line 8
divu.l d1,d0 *line 9
bra loop *line 10

Believe it or not this turns the number 12345678, in d0 into
87654321. I’ll start by explaining the different instructions. In
line 3 I use the expression “loop:”. What this does is that it
creates a
subroutine named “loop”. Subroutines are what assembly is all
about. These are a set of instructions that do a certain thing,
and whenever you need that thing done you tell the computer to
execute that and then return to where it left off. You would have
a main loop, along with a bunch of subroutines, and whenever the
main loop would need to do something it would go to a certain
subroutine. For example a simplified word processor, would have a
main loop in which it will wait for a key to be pressed. Once
that happens a subroutine would be called in which the key is
printed on the screen, and after that’s done the processor would
go back to executing the main loop. Another importance of
subroutines is that you can use conditionals to branch to them.
For example when you enter a password, the program would check
the password, and if it is correct it would “branch” to a certain
subroutine. If it is not correct it would branch to another
subroutine. So in our example the subroutine is called “loop”,
and by putting the colon beind it, we tell the decompiler that
it’s a subroutine. The last line, means branch always to the
subroutine “loop”. This is sort of similar to the “goto” command
in BASIC. Once the processor reaches this command it will find
the subroutine and execute whatever is in it. The instructions
“divu” and “mulu” mean divide and multiply using unsigned
arithmatic. I’m not going to get into what signed and unsigned
bits are because that is not for beginners.

Let us now follow the code through:
First two lines should be preatty clear. Line three tells the
processor that a subroutine called “loop” will begin. Line 4
moves the HEX number 12345678, into data register 2. It is
important that you realize that whatever is in a data register
will be regarded by the processor as a hexadecimal number! Line 5
multiplies 12345678, by 10000000. What does this do? Get out your
scientific calculator, or drop into MacsBug, and try it out. It
should give you the number 123456780000000. Now, we must remember
that a data register may only hold a long, meaning 8 digits.
Therefore after line 5
is executed d2 will contain the value 80000000. And after
dividing this by 10000000, d2 will contain the number 8. Cool
huh? We had to do all these things just to take the last digit of
d0. All the other lines should be quite understandable for you,
we add 8 to d3, multiply it by 10 (giving us 80). Then d0 gets
divided by d1. Why? You will see in the next loop! After all this
is done, the processor
reaches the BRA command and brances back to loop. What happens
now is as follows, since d0 is now 1234567, by the time the
processor reaches line 7 d2 will contain the number 7, then that
will be added to d3, so that d3 will contain the number 87, then
it gets multiplied by 10 giving us 870, and the same thing
happens again. And after a couple of loops d3 will contain the
number 87654321. The only problem now is that after the 8th loop,
we will get a “divided by zero” error, because d0 will contain 0
and we are trying to divide it. So how do we make the subroutine
repeat itself 8 times only? like this:
move.l 12345678,d0
move.l 10,d1
clr.l d5
loop:
move.l d0,d2
mulu.l 10000000,d2
divu.l 10000000,d2
add.b d2,d3
mulu.l 10,d3
divu.l d1,d0
add.b 1,d5
cmpi.b 7,d5
bne loop
rts

Here I added 3 more lines. In line three data register 3 is
cleared (set to zero). Then in line 1, d5 is increased by one. In
the next line the compare command is used, and the number in d5,
representing
how many times the loop has been executed, is compared to 7. Why
7? Because at the first loop d5 had the value of 0. The last line

here means return from subroutine, and here it means the end of
our
program. If this code however would only have been a subroutine
of a big program, then once rts would be reached, the next
command would be the one that is after the command which told the
processor to do the subroutine.

--==<The Mac OS>==--
Well now you know how assembly works. But if you don’t know how
the Mac OS works it is sort of difficult writing a program for it
(unless you want to rewrite several parts of the OS). In reality
when you write something in assembly language, you let the Mac OS
do most of the work for you. For example when you want a window
to appear, you would tell the OS a couple of things, like size
and the title in the window, and then you let the OS do the rest
for you. For example to display an alert box (that is saved in
the program’s resource fork) you would write the following:
clr.w -(sp)
move.w d0,-(sp)
clr.l -(sp)
dc.w alert
move.w (sp)+,d0

Now that doesn’t look complicated, only you knew what the hell it
meant! First of all sp refers to the stack pointer (address
register 7, remember?). The negative and positive signs behind
and after
sp, means whether the sp is incremented or decremented. Wow there
are two expressions for you! Remember how an address register
points to an address in a memory? Let’s say that sp is pointing
to the location 100 in the memory. Next the word “abcd” is put
into the memory at location 100. Now remember how the stack
pointer works on a principle of pushing thing on and off it? So
if after “abcd” was pushed on it, and I want to put something
else on it as well, I’ll have to decrement the sp, menaing
decrease 100 by 4 (since I’m moving a word onto the sp). So after
the decrement the sp should point to 96. And once “abcd” is taken
off the stack and the sp is incremented it should point to 100
again. Well that’s the idea behind it...So the first line clears
a space for a word on the
stack pointer. The next line pushes the id of the alert you want
to use onto the stack pointer. Then another clearing, followed by
the dc.w command. This tells the processor to do the subroutine
labeled
“alert” in the OS. (Well this is not strictly true, as the
processor would first find out the number equivalent of “alert”,
that you already programmed, and only then would it branch). And
once the

alert is done, it return the number of the button pressed in d0.
This is what is commonly refered to as an OS Trap.

ProZaq

